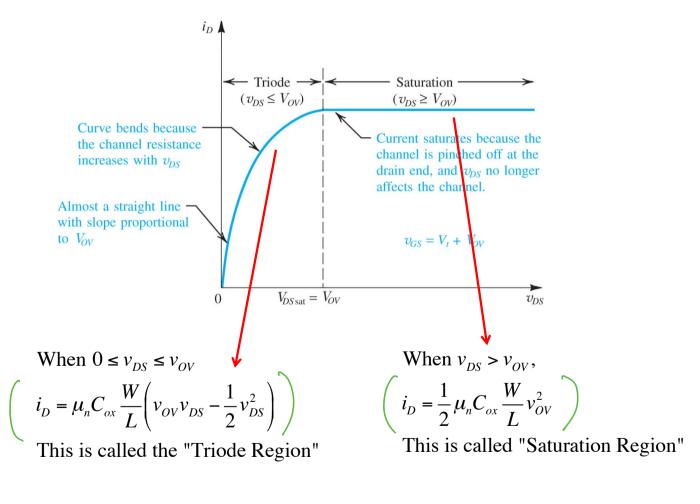
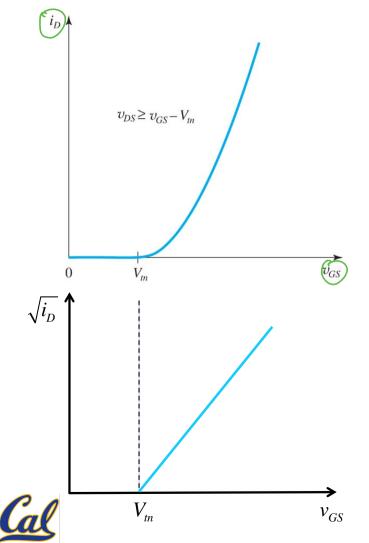
EE105 Microelectronic Devices and Circuits: MOS Large Signal Model and Bias Circuits

Prof. Ming C. Wu

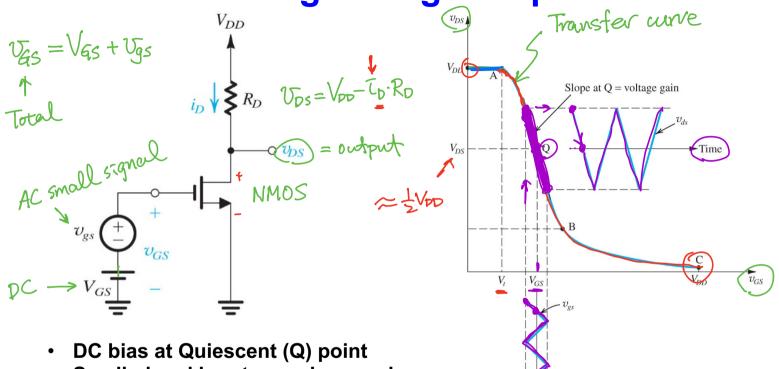

wu@eecs.berkeley.edu

511 Sutardja Dai Hall (SDH)



Saturation Region (v_{DS} > v_{OV})

Drain Current vs Gate Voltage

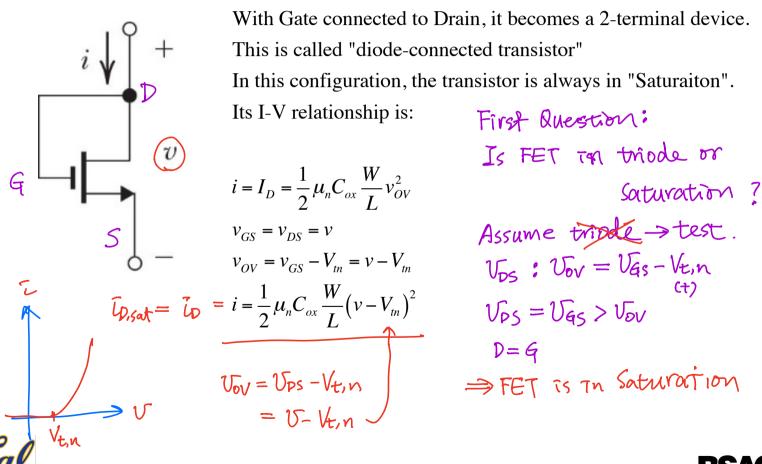

In Saturation Region

$$i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} v_{OV}^2$$
$$= \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_{tn})^2$$

To experimentally determine V_{tn} : Measure and plot $\sqrt{i_D}$ versus v_{GS} $\sqrt{i_D} = \sqrt{\frac{1}{2}\mu_n C_{ox} \frac{W}{L}} (v_{GS} - V_{tn})$ V_{tn} = intercept with horizontal axis

Analog Voltage Amplifier

- Small-signal input superimposed on a DC bias voltage
- Symbol used in this course:


$$v_{GS} = V_{GS} + v_{gs}$$

 Need to know the transistor's I-V characteristics to find the voltage gain (and other properties of the amplifier)

Time

Diode-Connected Transistor

Example Circuit (1)
Design Problem: Need set
$$J_{D}$$
. V_{DS}
Determine R_s and R_D such that the NMOS is biased at $I_D = 0.4mA$
and $V_D = 0.5V$. The NMOS has $V_i = 0.7V$ $\mu_n C_{ox} = 100\mu A/V^2$,
 $L = 1\mu m$ and $W = 32\mu m$.
 $V_{DO} = 0.5V$. The NMOS has $V_i = 0.7V$ $\mu_n C_{ox} = 100\mu A/V^2$,
 $L = 1\mu m$ and $W = 32\mu m$.
 $V_{DO} = 0.5V$.
 $I_D = 0.4 wA = \frac{V_{DD} - V_D}{R_D}$
 $R_D = \frac{V_{DD} - V_D}{I_D} = \frac{2.5 - 0.5}{0.4} = 5k\Omega$
 $I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{OV}^2) = 0.4mA \rightarrow v_{OV} = 0.5V$
(channel length modulation can usually be ignored
when solving DC bias)
 $v_{GS} = V_i + v_{OV} = 0.7 + 0.5 = 1.2V$
 $R_D = \frac{V_S - V_{SS}}{I_D} = \frac{-1.2 - (-2.5)}{0.4} = 3.25k\Omega$
 $R_S = \frac{(-2 - (-2.5))V}{0.4 wA}$
 $R_S = \frac{(-2 - (-2.5))V}{0.4 wA}$